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SUMMARY 

A broad analytical study of the effect of edge restraint on the buckling 
stress of geometrically perfect, axially compressed circular cylindrical 
shells, based on linear elastic f.heory, is presented. An overall evalu-
ation of this effect is made by studying the 16 limiting cases of restraint 
which correspond to the vanishing of generalised forces and generalized 
displacements at an edge. Of the 16 limiting cases, 7 of which are studied 
for the first time, it is found that 8 permit buckling to occur at stresses 
less than the classical theoretical value of buckling stress. The fact 
that both theory and experiments indicate that the effect of shell length 
on ".he buckling stress can usually be disregarded is used in the analysis. 
This faet suggests that shells may be assumed to be semi-infinite; as a 
consequence, formulas for buckling stresses are determined in essentially 
closed form. 
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INTRODUCTT ON 

Recent attention has been devoted to the study of the effect of edge 
restraint on the buckling behavior of thin circular cylindrical shells 
subjected to axial compression [1 through 6]*. A recent survey of the 
results of these studies and the conclusions drawn from them has been 
prepared by Hoff [7]• 

In addition to the strict enforcement of edge conditions at the instant of 
buckling, Stein [8,9], Fischer [10], and Almroth [11] have accounted for 
the prebuckling deformations due to edge restraint from the inception of 
compressive loading for shells with the various types of simply supported 
and completely clamped edges. The effect upon the comr ssive buckling 
stress of lateral pressure was also studied by these autnors. 

The present study is a broad treatment of the effect of edge restrairt on 
the compressive buckling stress of circular cylindrical shells; the analysis 
is simplified by treating semi-infinite shells, since previous experience 
haB indicated that the effect of shell length on the buckling stress is 
negligible, unless the shells are very short [!>,6]. Limiting cases of edge 
restraint which correspond to the vanishing of generalized forces and 
generalized displacements at an edge ere treated with the aid of the linear 
Dormell equations. The buckling solutions are obtained without great diffi-
culty, and most of the results are presented in essentially closed form. 

Of the 16 limiting cases of edge restraint, 7 are examined here for the 
first time; additional information regarding the remaining cases is also 
presented. In particula , a closed-form expression for the buckling 
criterion treated numerically in Reference 2 (and again in Reference 6) is 
derived, the solution found by Hoff in Reference 1 is extracted from this 
expression as a special case, and the results of Reference 6 for long shells 
with completely clamped edges are reestablished readily. 

With these results at hand, it is possible to summarize the information 
obtainable from linear elastic theory regarding the effect of edge restraint 
on the buckling stress of axially compressed circular cylindrical shells. 
The governing equations which are utilized in the analysis are discussed 
thoroughly in order to put the results presented here and those previously 
obtained in References 2, 8, 9> 10, and 11 in proper perspective. 

Hie present investigation represents a single detailed analysis ir the 
overall program of plate and shell theoretical analyses currently in 
progress at Stanford U. versity in the Department of Aeronautics and Astro-
nautics. Unfortunately, there appears to be no published experimental data 
available at the present time with which the analytical results presented 
herein can be compared. A systematic, complementary, experimental investi-
gation into edge-fixity effects is currently in progress under this same 

Numbers in brackets indicate the references listed at the end of the 
report. 
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contract, but quantitative results are, as yet, unavailable. In view of 
the success of the etatistical approach to shell buckling experiments 
developed earlier in the experimental phases of the contract work, reason- 
able correlation of test results with linear elastic theory can be expected. 

BASIC THEORY 

THE KARMAN-DONKELL BftUATIONS 

The plate equations of von Kiraän were extended by Donnell [12] to the 
analysis of circular cylindrical shells; these equations are the foundation 
of the present analysis and may be written as 

and 

V^F = E (W2 - W  W  - -^E) 
^ ,xy  ,xx ,yy R    j 

(R)vk\f -F  W  +2F  W   -F  (W  +i)=0 vt/v    ,yy ,xx   ,xy ,xy  ,xxs ,yy R' 

where F is an Airy stress function defined such that 

(1) 

(2) 

a0=F x       ,yy T      = -F xy ,xy a0 = 7 y       ,xx (3) 

Boundary conditions for complete cylinders with edges along constant x- 
curves are defined by the four following alternate choices of quantities 
which may be prescribed: 

X 

0 

u 

V 

w 

w 

or 

or 

or 

or 

xy 

R   » - D(W + (2-v)w       ) + t<r?W     + tx0 W x v ,xxx      x      ' ^xyy' x ,x        xy ,y 

M   = - D(W        + vW     ) x ,xx ,yy/ 

WJ.th reference to the figure (page 3),      U,  V, and W   are the components of 
the displacement vector in the axial,  tangential, and radial directions, 
respectively,  and the coordinates describing the undeformed shell mldsur- 
face are   x, y = Rö,  and z. 

The strains at the shell midsurface are given by 

e
0 = ü    +i(w   )2> 
x       ,x     2N  ,x 

(continued) 



Circular Cylindrical Shell Coordinate System 
and Sign Convention. 



;0   =   V "   +   |   (W      )2     i 
y      ,y    *    2    ,y     } 

= u    + v    + w w 

W 

xy      ,y -x ,y 

The changes in curvature and twist of the shell midsurface are 

K     =   -   W ,xx y        ,yy    ' 
K     = - w xy ,xy (5) 

The stress-strain and moment-curvature relations for an isotropic Hookean 
elastic material are 

^00 0 
Et     = ff    - vff x       x y 

He     = ff    - vff      > y       v x   / 

E        0 0 
2(l+v) 7xy = Txy 

(6) 

MX - D(<X + v<yn 

\ = D(Ky + V'cx) 

Mxy " ^^V)^ 

(7) 

where   M    , M    , M       are the moment resultants and   D = Et /l2(l-v )  . 
x       y       JQT 

THE LINEARIZED DONNELL EqjATIONS FOR COMHtESSIVE AXIAL PRESTRESS 

The membrane solution to the Karman-Donnell equations for uniform axial 
compreesion is 

yffR wo ■ - 
VW4 

E 

uo = - 
ffX 
E 

vo ss 0 

(8) 

This membrane or "momentless" state can exist only if the uniform radial 
expansion   VL    is permitted to occur. 



If equilibrium states which differ only slightly from the membrane state 
are considered and If sufficiently small changes In all quantities,  say, 
Bj, U., Vp    and    W,,    are assumed; the basic equations can be llnearlred. 
OEe substitution of   P0 + P^,    etc.,  Into equation (l) through (7) and 
subsequent linearization result In the following equations governing the 
perturbations •from the membrane state: 

^ Fi = - i wi,xx 

and 

$^1 + ^xx l^.o 

(9) 

(10) 

where the Increments In the mldsurface stresses are obtained from F. by 
the relations 

\ s Pi,yy ' 
T    = - P 
^1 xy,   "l*xy 7l,xx (11) 

These stresses are related to the displacement components by the following 
equations: 

EU,     * a     - vo l,x      XT y. 

^ ^y     R j      y1 x1 

t 

S&vT^y + Vl,x) ■ Vi 

Equations (9) through (12) have been put In a convenient nondlmenslonal 
form by Nachbar and Hoff [2], who define the following new variables*: 

(12) 

u"r(; %r 
w. 

x/2E \l/2 

f"Äfe) -£     ^ 
1/2 

The notation used here Is slightly different fron the notation in 
reference 2. 



where aci    1B the claaslcal buckllrig ütrcas from linear theory given by 
the formula 

'Cl  [3(l.v2)]1/2^ 
(iM 

With the aid of the definitions in equation (13), equations (9) through 
(12) can be replaced by the following dimensionless expressions: 

V f ■♦■ v   =0 
^55 

7 w + 2pw   - f   = 0 
*E5    >55 

0  „„   0 or = Ef ^ , T -Ef 
19 

,   O      = Ef 
,11 

(15) 

(16) 

(17) 

u . = f ^ - vf .. ^ 

u « + v » " -2(l+v)f em 

(18) 

where 72 ()-()!. + () ^ (19) 

Hie boundary conditions for the linearized equations require the specifi- 
cation of 

u or 0  ■ Ef 
W 

and 

v or T 
*y. 

w or  R. 

-Ef 
19 

(20) 

.1/2 

/or  M  = -Rtf-^ijf w .a + vw ^j 

Equations (15) through (18), (19), and (20) will be used in the subsequent 
buckling analysis; they are equivalent to the equations deduced by Donnell 
[13] for compressive axial prestress. 

The purpose of describing in detail the derivation of the basic equations 
is to emphasize the following two points: 
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1. Consistent linear stability equations, along with their aesoc- 
iated boundary conditions, are always obtained by linearizing 
consistent nonlinear equations about the basic state of equili- 
brium whose suability is to be investigated.    The alternate 
techniques for deriving stability equations, even when based 
upon appropriate modification of small displacement theory by 
the inclusion of the effects of "apparent buckling forces", must 
be utilised with caution and are not recommended; the accuracy 
and consistency of the resulting equations and associated 
boundary conditions cannot be assured or easily assessed.    The 
boundary conditions employed in Reference 2, for example,  are 
inconsistent with the differential equations upon which the 
analysis is based,* as has been pointed out in Reference 6; a 
closed-form expression for the buckling criterion studied in 
Reference 2 will be derived subsequently, thus demonstrating the 
advantages of consistency. 

2. The linear stability equations used by Stein  [8,9],  Fischer [10], 
and Almroth [11] in their studies of compressive buckling of 
cylindrical sheila were derived by linearization of the Kirmin- 
Donnell equations about basic states of equilibrium which differ 
from the membrane state equation (8). These authors account for the 
effect of axisynmetric prebuckling deformations,  as previously men- 
tioned in the introduction, which rigorously enforce the prescribed 
boundary conditions in the basic states of equilibrium.    For 
axially compressed cylinders, Almroth [11], who also performed 
calculations with these nonuniform prebuckling deformations 
neglected, states that the results which he obtained using the 
equivalent of equations (9) and (10) are not significantly 
different from those obtained using equations in which the bound- 
ary conditions are rigorously enforced from the inception of 
compressive loading. 

SOLUTIONS OF THE BASIC EQUATIONS FOR COMPLETE CYLIHnRICAL SHELLS 

THE FORM OF THE SOLUTIONS 

In the case of the complete cylindrical shell,    f   and   w    must be periodic 
functions of the circumferential coordinate   y.    Since only derivatives of 
even orders appear in equations (15) and (16), it is obvious that products 
of functions of    {    alone with either    8in(sy/R)   or   cos(sy/R),    where   s 
is an Integer,  can be made to satisfy them.    The ordinary differential 

« 
Although the problem was formulated with inconsistent boundary conditions, 
the numerical calculations were performed after the inconsistent terms 
had been discarded on the basis of an order-of-magnitude argument. 



equ.'ii.iofiu for f'unctlorm of    t    w Ich ore obtalrifd ty »uch an atsuatd 
colutiun are solved by exponei.Ljtil Iunctlona cf    t;    thua, vKhout loaa or 
gfucrnjjLy, eoluiloiiL are auaujn* d 01  the lorm 

AeP* COB ri9    [ 

HePt coa 09   J 

(21) 

where   A   and   B   are cotistants; and, fron aquation (13)»    n   «uat be 
related to   u    by the equation 

1/2 
n ■ a (ty    .wuSn-^r (22) 

By Introducing equations (21) Into «quationa (15) and (16), tba txMoganaoua 
equations for the values of   p   are found to ba 

(p2-n2)4 

L' ((p2-n2)    *2PP2] B 
(23) 

For nontrlvlal aolutiona to aquationa (23). tba datandnaot cf tba aatrix 
of coefficients muat vanish, ah'.ch gives tba charactarlatir aquation 

2 2 
(p2-n2)  [(p2.n2)    ♦ 2pp2J ♦ p    - 0 (24) 

2       2 If   p    * n ,    then only the trivial aolutlon reaulta; by excludir« this 
poaalbllity, aquation {2U) can ba vrlttan aa 

where 

C2 ♦ 2pC ♦ 1 • 0 

p 

From aquationa (23) it la found that 

where   C   la a aolutior. to aquation '25). 

U5) 

(26) 

(27) 



Va ROOTS OP BQUAnOK (2k) for p < 1 

Solutions to the character it tic equation (24) were first given by Nachbar 
[Ik] without the details of their derivation. A concise discussion of the 
solutions y.'ll be given here* for the purpose of providing various, 
Identities that «111 be used subsequently. 

If p a 1« the two solutions of aquation (25) can be conveniently written 
aa 

1/2 
(^ - - P ♦ 1(1-P )   = Q 

2 1/2 
C2  - p - iCl-P^)   =  Q 

(28) 

(29) 

where Q and Q are complex conjugates and 1 = + \Pl.    The modulus of 
Q Is unity; that le, 

QQ - 1 (30) 

The following expressions for the positive square roots of   Q and Q are 
noted: 

V2 
(31) 

5^2. +J^[(l.p)l/2. ^^1/23 
■f2 

(32) 

aquations (26), (26) and (29), four quadratic equations for the roots 
p are obtained; that is 

2 2 
P -n = 
P 

: ^ 

* «i/a 

+ 5
1/2 

The two roots of equation (33), designated p. and p,. , are 

'x-|[-' QVS .(^„2) 
1/21 

'   J 

(33) 

(34) 

(35) 

(36) 

(37) 

The notation employed here differs from that of Reference 14; the notation 
of Reference 4 is utilized. 



= I [V7-' + (Q^n2)17 J (38) 

Similarly, the remaining six roots are obtained from equations (3^),   (35), 
and (36).    They are 

P5 

from equation (3^) 

r p3 pi 
from equation (35): I (39) 

P7»P5 

[Pj      =     -   P- 

2 1/2 
The quantity    (ft+^+ir) it; tain n to be the positive square root of 
(QAn^)    and may be written in the following way: 

(Q+^n2)    " = -L[(r+4n
2 -p)1/2 + l(r-Un2 + p)l/2] (W)) 

where 

2 1*  1/2 2    2 2 ^ 
r 2 +(l-8n2p + l6n )       = +[(Un<2-p'e) + 1-p^] (hi) 

Note that If    p i 1,    then   r   must be positive. 

With the aid of equations (31) and (40),    p.    and   p     can be written with 
their real and imaginary parts explicitly separated; the expressions are 

p    - -Ma.   + Iß,) (42) 
2 >/2 

and 

where 

PP - -—(Ofp + lßp) (43) 
2 V2 * 

^ = -(l-p)l/2 -(r^-p)172; ß;L - -(l+p)l/2 .(r-4n2
+p)l/2 

10 



a2 -   (l-p)1/2 -(r+n2.p)l/if; ß2 = (l+p)l/2 -(r^ri^p)1^ (^) 

The following identity is useful and may be verified by direct expansion: 

(r^-p)1/2^2-*)1/2 = (l-p2)1/2 (^5) 

SOLUTIONS SUITABLE FOR ANALYZING THE BEHAVIOR OF LOWS SHELLS 

Pour roots of equation (2*0, p  through p., have negative real parU 
for values of p less than unity; a proof of this statement is ßiven in 
Appendix I. Roots of this type indicate that solutions which decay 
exponentially with t   exist and that sufficiently long shells may be 
treated mathematically as semi-infinite whenever p < 1. A discussion of 
the applicability of "semi-infinite" buckling results to shells of finite 
length is given in the next section. 

If a shell is assumed to be semi-Infinite along the positive x-axis with 
Its edge at x = 0, f and w will be bounded as x -• • and can be 
written, with the aid of equations (27) through (30), (37), and (39), as 
follows when p * 1: 

w = A1e
Plt + A^'/  + AjJl6 + A^e^1 cos «p 

- - [A^-VI* ♦ AgCfW + AjQ "Vl1 + A^Q *Wj 

= - AJQB
5
!
6
 + A2^e

P2S + AjQe1*!6 + A1|Qe
p26 cos Wp 

(^) 

cos ncp 

(^7) 

where    A.    through   A.     are arbitrary constants.    Substituting equation (U?) 
into eqttation (1?) yields the following results: 

Ji = f^ = n2 rA1QePl6  + Kpe^ + AjQe^l1 + A^ÄM cos «p   (48) 

0 

—i = f^ = -^p^l5   < A^p^Qe^5 + V2QePie  + A^p^Qe^M cou rxp 

11 



SubBtltuting equatioiiE ('i(>),  Qi&),  rmA (^0)  into the expression for   v 
In equations   (l8)  gives ? 

v      = f .,  - vf   + w 

2 M 5,1 7T^   2^,   2n p0| A1[l-Q(p^vnc:)]ei,lc  + Ajl-QCp^+vn^Je^ 

+ A3[l-Q(^ + vnL,)]e^ie + A^l-Q^ + vn2)]    cos ncp        (5l) 

The utilization of equations ('iß)  and (50)  in the expression tor   u .   , 
equations (18),  and subsequent integration of the result yields 

- (li +^1)     p  F -  (ri +VP2)    p  i A Q -_i- ePl-'   + A Q  —^- eP25 

J Pn 2 p. 1 

2, -2 

2 

■;j    -2, (n +vp )    - (n +vp )   - 
+ A,Q  — epl5   + A, Q  — eP25 cos ncp (52) 

The process of integration with respect to    g    could introduce 8 linear 
function of    |    in addition to the terms given in equation (52).    This 
linear function,  however, represonts the same form of displacement as    IL, 
and thus it is uniquely included in    UQ   when the axial stress    a   is 
fixed in magnitude. 

Equation (52) can be put in a more convenient form by the use of the 
identity 

P1P2      P1P2 

n 
(53) 

which may be verified by direct expansion.    By using this result,  equation 
(52) can be written as 

u =   [A1Q(p2+vp1)epll  + A2Q(p1+vp2)eP2l 

+ A3Q(p2+v^1)..plfj   + AuQ(p1+v^2)eP?Fj 1 cos ncp (5M 

All the necessary physical quant.ities can now be obtained from oquaLLonc 
(46), (48) through {ujl),  and (5'i) for the aemi-lnrinll.e shell In M.-rmfj of 
the four arbitrary constants A.  through A^ . 

12 



APPLICABILITY OF SEMI-INFINITE SHELL BUCKLING SOLUTIONS TO SHELLS OP1 FINITE 
LEKGTH 

In the preceding discussiori of solutions to the governing differential 
equations, the solution suitable for the analysis of semi-infinite shells 
was assumed to be adequate for "long" shells. A shell is "long" according 
to this definition if the conditions at one of its edges can be analyzed 
without regard to the conditions prevailing at the other. 

It is well known that there are two decay lenghts for edge disturbances in 
circular cylindrical shells; these correspond to the exponentials propor-
tional to arjd 0*2. Since the quantity n is substantially less than 
unity for thin shells, it follows from the proof in Appendix I that the 
ctp - exponential terms in the semi-infinite shell solution have large decay 
lengths, thus suggesting that shells may have to be very long before this 
solution alone can satisfactorily describe their buckling behavior. 

Results obtained in References 5 and 6, however, indicate that buckling 
stresses are essentially independent of shell length for shells of practical 
geometric proportions in the cases of edge restraint that were investi-
gated*; buckling stresses obtained in References 2 and 4 for semi-infinite 
shells agree well with their finite-length counterparts for all but the 
very short class of shells. The buckling mode shapes in some cases offer 
intuitive Justification for this agreement between "finite-length" and 
"semi-infinite" buckling stresses. The modes for finite-length shells 
found in Reference 5, for example, can be visualized as having been con-
structed by appropriately Joining, in a continuous manner, two oppositely 
directed, semi-infinite modes at the midlength cross section of the 
cylinder; the superposition of a rigid body rotation and a reflection of 
one of the semi-infinite modes could represent the finite-length mode which 
is antisymmetric with respect to the midlength cross section. 

Since past experience points to the conclusion that semi-infinite shell 
analyses, which offer great mathematical simplicity, predict nearly the 
same buckling stresses as their more involved finite-length counterparts, 
the semi-infinite assumption will be used exclusively in the subsequent 
determination of buckling stresses. Little generality is sacrificed in 
adopting this assumption, since very short shells, the class of shells for 
which this assumption has been shown to be in error in Reference 6, are 
likely to buckle well into the plastic range. 

There is one exceptional case that was found in Reference 6. This is the 
case of a relatively short, completely unrestrained cylindrical shell, 
and it will be discussed in a subsequent section. 
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CLASSIFICATION OF EDGE CONDITIONS 

SCOPE OF THE INVESTIGATION 

When cylindrical shells are utilized as structural components of flight 
vehicles, their edges are restrained by adjacent structural components; 
which may be represented by "effective" elastic or Inelastic springs. When 
cylindrical shells are tested in compression under laboratory conditions, 
loads may also be supplied to the shell edges by friction between the 
source of load application and the shell or its mounting fixtures. Such 
effects will not be considered here; the types of edge fixity to be treated 
may be regarded as limiting cases of more realistic edge-flxlty conditions. 

The edge conditions characterized by equations (20) can be conveniently 
separated into two categories which, for the lack of better terminology, 
will be referred to as "normal" and "tangential" edge conditions. Normal 
edge conditions refer to the conditions Involving quantities that govern 
the motion of the shell 3dge in the direction normal to the tangent plane 
of the shell midsurface at any point; these are then conditions describing 
the behavior of an edge due to bending and twisting. Tangential edge 
conditions, on the other hand, govern the motion of the shell edge in the 
tangent plane to the shell midsurface at any point and characterize the 
behavior of the edge under loads parallel to the tangent plane. Since 
only limiting cases of practical edge restraint are to be studied here, 
these two categories will be classified separately. 

CLASSIFICATION OF NORMAL EDGE CONDITIONS 

Each of the following four classes of normal edge conditions will be 
identified by two letters which are abbreviations for the terminology 
assigned to the particular class: 

FF: The "free-free" class for which 

R = 0 and M = 0 (55) 

FC: the "free-clamped" class for which 

R =0 and w .. = 0 (56) 
X )Z 

SS: The "simply supported" class for which 

w = 0  and M = 0 (57) 
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CC:    The "completely clamped"* class for which 

w = 0     and   w      = 0 (58) 

It should be mentioned that within the linearized theory of static stability, 
the condition   w » 0   in equations (57) and (58) nay be replaced by 

w = w0 + w1 = 0 (59) 

If the perturbation displacement W, is chosen to nullify the uniform 
radial expansion WQ, then the displacement W. will approach infinity at 
the buckling stress. Each of these equivalent ways of prescribing the 
boundary conditionB loads to the same unique buckling stress, since the 
buckling condition is defined by the vanishing of the same determinant in 
both instances. 

CLASSIFICATIO'N OF TANGENTIAL EDGE CONDITIONS 

Each of the four clashes of tangential edge conditions will be identified 
by an integer; the selection of one class of normal edge conditions to- 
gether with one of the following classes of tangential edge conditions 
represents a complete description of edge restraint: 

(60) 

(61) 

(62) 

(63) 

As an example   e classical buckling stress is obtained for SS3 edge 
restraint when equations (57) and (62) are enforced at the ends of the 
shell. 

1: 'k'° and x0 =0 
^1 

2: u  =0 and T0 =0 
^1 

3: 
Xl 

and v   = 0 

hi u  =0 and v   = 0 

•A* 
"Clamped" is a conventional description of this class; the term "com- 
pletely clamped" is introduced to provide a contrast with the "free- 
clamped" definition given previously. No standard terminology has been 
agreed upon, however; the authors of Reference 6, for example, refer to 
this class of restraint as "rigid-fixed". 
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BUCKLING STRESS RACTOS FOR LIMITIM} CASES OF EDGE RESTRAINT 

FF1 CASE 

This case was treated initially by Hoff [1] for axisymmetric buckllne 
deformations. The generalization to nonaxisyTiimetric buckling was subse- 
quently accomplished by Nachbar and Hoff [2]; in this study, however, 
boundary conditions which were Inconsistent with the differential equations 
that the authors utilized in the analysis were employed to formulate the 
problem. This inconsistency was later pointed out by Hoff and Soong [6] 
and was corrected in their extended analysis which accounted for the effect 
of finite shell length. 

Although the correct numerical result for long shells was essentially 
obtained in Reference 2 and was verified in Reference 6, it Is of theoret- 
ical Interest to reinvesiigate this case, for it will subsequently be shown 
that a closed-form expression for the buckling criterion is obtainable. 
However, the important result of the analysis is the procedure of simplifi- 
cation which can be used directly to treat other cases without great diffi- 
culty. A collection of identities which will be used in the following 
analysis appears in Appendix II. 

With the aid of equations (U6), (^8), (49), and (20), the requirements 
given in equations (55) and (60) for the edge at x (or |) = 0 lead to 
the following four algebraic equations: 

Q 

PiQ 

(p^-vn2) 

Q 

P2Q 

/ 2  2v 
(P2-Vn ) 

Q 

P-LQ 

(p-L-vn ) 

Q 

P2Q 

(i^-vn2) 

2, - r-2 2, - r-2 P1[p^2p-(2-v)n
c] p2[p2+2p-(2-v)n

tf] p^i^p-^-v)^] p2[iJ+2p-(2-v)n'
i] 

A, 

(6M 
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^ 
e rows of the matrix of coefficients correspond to the vanishing of •OWl 

, T0 , M , 
xy,' x' 

and R i respectively. 

Equation (64) represents a system of homogeneous» linear algebraic 
equations; nontrlvlal solutions for the constants A^ through A^ are 
possible only if the determinant of the matrix of coefficients vanishes. 
The value of the stress ratio p for which the determinant vanishes are 
critical values which correspond to buckling within the scope of linear 
static stability theory. 

Since the vanishing of the determinant of the mrlrlx of coefficients is the 
only factor of Interest here, Jt It desirable to multiply the rows and 
columns o:' the determinant by nonzero quantities In order to obtain alge- 
braic simplifications. The first operations to be performed are: 

1. Multiply the columns of the matrix by pg, p1, Pp, and p., 
respectively; and in view of equation (53), n2 factors may be dis- 
regarded In the last three rows of the matrix since they do not 
Influence the vanishing of the determinant. 

2. Subtract the first column from the second, and subtract the third 
column from the fourth. 

The modified determinantal equation resulting from the above operations is 

^(P-L-Pg) 

0 

P2Q QCPi-Pg) P2Q 

5 

(p:L-iT2) 

p^[2p-(2-v)n2] 

(l+v)(p2-p1) 

2 _2, 
(P^-Pj) 

(P-L'^g) 

i2+[2p-(2-v)n2] 

(l+vKig-P-L) 

(p2-pl) 

= 0 

(65) 

The 
removed 
by 

factor (Pp-p-,) multiplying column 2 and the factor (Pp-Pi 
ved, since they represent multiplication of the remaining de 

(Pg-PiKi^-P;!.) = 1 

-p.) may be 
determinant 

(66) 

TbuB, equation (65) can be written as 

p25 -Q P2Q -Q 

0 

(i+v) 
Q 0 

(1+v) = 0 

p2+[2p-(2-v)n2] (P^g) i2+[2p-(2-v)n2] (5^2 ) (67) 
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The following operations are nov performed: 

1. Multiply column 2 by pp and add the result to column 1; multiply 

column k  by p  and add the result to column 3. 

2. Equation (53) and the following identities are used to simplify the 
modified first and third columns: 

p1 + P2 = 2n + Q 

-2 . -2 2 . TT p- + p2 = 2n + Q 

(68) 

(69) 

The determinantal equation becomes 

0 -Q 0 -Q 

Q 0 Q 0 

(P1+P2) (1+v) (i^) (1+v) 

Q + k (P1+P2) Q + k (P^ 

where 

= 0 (70) 

k = 2p + (l+v)^ (71) 

If the rows and columns of the determinant in equations (70) axe rearranged, 
the result can be conveniently written as the sum of two determinants 

t = ^ + L2 = 0 (72) 

where 

*1 = 

Q Q 0 0 

Q        Q        0        0 

0        0-0,-0, 

(P-L+Pg) (VP2)    (1+v)     (1+v) 

and 

- (l+v)(Q.Q)2(ftfQ) 

(73) 
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L2- 

Q Q 0 0 

0 0 -Q -Q 

(PxtP2)    (P^)      U+v)        (1+v) 
= k(l+v)(Q-Qr-[(i1+P2)Q-(p1+P2)Q]' 

(7^) 

The substitution of equations (73) and (7^+)  into equation (72) yields the 
simple result 

(ft-Q)2(l+v)[((^) + k] = [S^n - (P1+P2)Q]2 (75) 

However, 

Q + Q + k = (l+v)n2 

so equation (75) offers the two possible solutions 

(Q-Q)(l+v)n = ^[(p^)^ - (P-L+P^Q] 

5y direct expansion, the following expressions are easily obtained: 

(P^E - (P^Q = - -ii[p(r-4n2
+p)l/2 -(l-p2)1/^^^^)1/2] 

(Q-Q) = - sid-p2)1/2 

Equation (77) is* therefore, equivalent to 

(l-p2)l/2 >r2(l+v)n = ±[p(r-Un2
+p)l/2 - (l-p2)l/2 (r+lm2-p)l/2] 

2      l/2 ffie quantity    (r+^n -p) '      cannot vanish unless    p = 1.    It may also be 
observed that   p = 1   will satisfy equation (80).    Since solutions for   p < 1 
are of interest, the multiplication of equation (80) by    (r+lm2-p)l/2   is per- 
«isslble; and, if the common factor    (l-p2)l/2   is ignored after equation (45 
if eaq?loyed, the following two alternatives are deduced from equation (80): 

(76) 

(77) 

(78) 

(79) 

(80) 

J2 (l+v)n(r-i4n2-p)1/2 = p-(r+4n2-p) 

V2 (l+v)n(r+4n2-p)1/2 = -p+(r-(4n2-p) 

(81) 

(82) 

The smallest value of    p   is obtained from equation (82); It was found 
numerically in Reference 6 to be 0.380 for    v = 0.3   and corresponds to 
n ■ 0.30. 
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Ibe «bow tquatlons tn mxtwmmly Mbtltlv» to tpproxlatt« t«chnlqu«t of 
•olutlot..   Hovvvvr. if   n   U pvimitud to vaaltk lo «liter «qiwtlon (81) 
or (H2), »*lcb Iflpilot «Uyitric d»fom«ilon. tho Mlatloo   p • 1/2 
rctUt»; this It tbo toluiloo that vu flrtt obtoiood by Hoff la Roferenc« 1. 

In thtir siudy of fir.iu-Lvnfih offtet«» Hoff and Boor« [6] iltcovvred 
that very ■hon aholla «lib Ffl «dftt eon lo bueklod by «xtrtwly low 
VOIUM of ftroMi tbo oodo of Inaiobllily U on« of tvitting u a curved 
atrip and can «aally b« vlauollaod.   Ihia aodo of buckling, bowavar» ahould 
not ba a aatlor of ecocom for ataalla that art currantly of Intaraat. 

FF2 CASE 

Bquatlona (59) and (61) will ba aatlaflad at | • 0 if tba first row of 
ttaa coafflelant Mtrlx in aquation« (6k)  la raplacwd by 

tp25    .: P2Q Vfl) (65) 

^ 

If tba aaaa aoquanea of oparatlona l» parfoi'td which aia^Ufiad the FT1 
caa« to tba for« fiwan in aquationa (70), tba burbllm condition for an 
FTZ •aupported aball can ba «rltton 

(P^j) 

^(Pi-Pj) 

0 

(l*v) 

Q 

(PiV 

-^(Pi^) 

0 

(l^v) 

(P^j,) 

(SU) 

If row 2 u ■ultipllad by 
row« and colian« ara 

and addad to row 1 in aquation (&•) and the 
$  tba bucblim condition can ba written 

I      L.*  L (85) 

Al- 0 

(Pi^) 

H 0 0 

5 0 0 

o -tiv^) -SCP^) 

•PJ (14») (!♦») 

■(i*w)tf-q?)t5(pl^2) 

(86) 

and 



Q Q 0 0 

0 0 -Q(P1+P2) -QCp-i+Pp) 

(P-L+PrJ (P-L'-Pg) (1+v) (l+v) 

k k (p^Py) (P^PJ 

or 

Ag = (Q-Q)k(l+v) [Q.iv1+V2)-4(v1^P2) ]-(Q-Q)r f QCp^+pg) -QCp^Pg) ]   (87) 

by use of the identity 

(P1
+P2)(p1+P2) = r (88) 

The substitution of equations (86) and (87) into (85), along with the use 
of equation (76), gives 

(Q-Q) {(l+v)2n2[Q(p;L+p2)-Q(pi+p2)].r[Q(p1+p2)-Q(p1+p2)]} = 0 (89) 

The quantity [(vifp2)Q.-(P1
+I>2^    is given in equation (78), and direct 

exptnaLon of the other terms leads to 

[QCP-L+PJ-QCP,^)] =-rL  fp(r^n2+p)
l/2

+(l-p
2)l/2(r-fiin2-p)l/2] (90) 

If equation (89) is multiplied by    (r+kn -p) '      and constant terms and fac- 
tors wbich vanish at   p = 1    are disregarded, the buckling condition becomes 

\2 2 2 2- 
Ml+v) n ]p = [r-(l+v) n ](r+4n -p) (91) 

or 

v2v  2 r^ +[(4-(l+vr)n^ - 2p]r - Ml+v) n    - 0 (92) 

Hie quantity    n      is proportional to   t/R,    and^thus it is small comi^red 
to unity for thin shells.    By neglecting the    n      term in equation (92)  and 
by noting that   r   can vanish only for   p > 1 ,   an approximate solution to 
equation (92) is found to be 

r «   2p -|>-(l+v)2]n2 (93) 

If terms in    n      and higher powers of    n    are neglected in the definition 
of   r,    the following approximate expression results: 
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Equations (93) and  (9^) yield the approximate buckling stress ratio 

p w|{l+[2-(l+v)2]n2) (95) 

which is vary nearly one-half for thin shells. 

FEZ AND FF4 CASES 

•Riese cases of edge restraint involve the replacement of the condition 
Txv =  ^ wit^1 v = 0 in the two preceding analyses; the second row of 
tnfel coefficient matrix in equations (6k)  is replaced by 

{[l-Q^+vn
2) ] [l-Q(p2+vn

2) ] [l-Q(i2+vn
2) ] [1-Q(i^vn2) ] 1     (96) 

The systematic simplification procedure employed in the two previous cases 
can be utilized again. The algebra is slightly more involved, but the 
buckling stress ratios for both FF3 and FFk  restraints are one-half plus 
small correction terms, the first of which is proportional to n2 as in 
the FF2 case. 

FC1 CASE 

The simultaneous satisfaction of equations (56) and (60) for nontrlvlal 
values of   A.    through   A,     Is ausured If the following determlnantal 
equation is satisfied: 

(97) 

!    ^ Q Q Q 

^ P2Q ¥ ¥ 
pa P2 pl "a 

3 
1   pi 

3 
P2 pj 31 c 

If the following operations are performed on the above determinant, 

1. Multiply the columnB of the determinant by   p2, p., p ,    and   p , 
respectively,  and disregard the    n*    factor appearing In the laut 
three rows. 

2. Subtract column 1 from column 2,  and subtract column 3 from 
column 4. 

3. Remove the factor    (p^P-jKiL-p-,) = 1    from the determinant as in 
equation  (65). 
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k.    Rearrange rows and colusms so as to have the four vanishing 
elementa occupy the upper right quadrant of the determinant. 

Then the buckling condition becomes 

Q      Q        0 0 

110 0 

P2Q 

2 
Pi 

P2Q 

(p-j^-'Pg)    (Pj^+Pp) 

(Q-Q)[Q(P1-»P2)-Q(p1+P2)] = 0 

(96) 

The first factor in equation   (9O)   vanishes for    p = 1.    From equation 
(76)* the second factor vanishee if 

)(r^nii
+p)l/2-(l-p^)l/2(r^n2-p)l/2 = 0 

1/2 

(99) 

.1/2 If equation   (99)   is multiplied by    (r+Un -p) '"    and the factor    (l-p4") 
is disregarded as in equation (81), the following result is obtained: 

r = 2p - kn2 (100) 

If both sides of this expression are squared and the definition of r is 
introduced, the quadratic equation 

1 - 8ri2p + l6n4 » (2p - kn2f 

is obtained; this result may also be written as 

4p2 - 8n2p -1=0 

The positive root of (102) is 

= i {l + kn    +  n2 

(1C1N 

(102) 

(103) 

which is very nearly one-half for thin shells. 

FCg CASE 

Equations (56) and (6l) will be satisfied at s = 0 if the first row of 
determinant in equation (97) Is replaced by 

P2Q P-^ P2ft PjQ ilOh, 
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If a sequence of elementary operav.ions is applied to the determinant;  the 
buckling condition car. be simplified to 

Q 

1 

P^Q 

Q 

1 

% 

-2 

0 

0 

-Q 

1 

0 

0 

-Q 

1 

= r^-Q)4 

(105) 

The factor r cannot vanish for values of p of interest, and (Q-Q) 

vaniehes for p = Ij therefore, buckling at values of stress less than the 
classical value is not possible. A discussion of buckling at p = 1 is 
given in Appendix III. 

FC3 CASE 

Equations (56) and (6?.)  will be satisfied at | = 0 for nontrivial values 
of A. through A^ if 

(1-ÖPi) (I-ÖP2) 

Q 

(l-Qi^) 

-3 

d-Qif) 

p. 

-3 

= 0 

(106) 

The application of a sequence of elementary operations reduces the buckling 
condition to 

,- x2   2rr, 
(Q-Q) + n [Q(p1-^2)-(i(p1+P2)][Q(p1-^2)-Q(p1+P2)] = 0   (107) 

If equations {!&),  (79), and (90) are utilized, the buckling condition 
simplifies to 

2(l-p2) - n2[r(2p2-l) - hn2 + p] = 0 (108) 

By  neglecting terms involving n  in equation (108) and using equation 
(9^-), an apporoximate equation is obtained; this equation is 

2(p+l)[l-p + n2(| - p)] = 0 (109) 
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The bracketed term in this expression vanishes (to the same approximation 
in terms up to n^) when 

P « 1 - (no) 

which implies buckling at slightly less than the classical value of stress. 

FCi* CASE 

The FC4 case represents the most rigid condition of tangential restraint 
Since buckling stress ratios of unity and slightly less than unity have 
been found for the FC2 and FC3 conditions of restraint, there is little 
doubt tha'.. buckling will occur at p = 1 in this case. It is indicated 
in Appendix III that p = 1 is always a possible buckling stress ratio 
for all cases of edge restraint; this fact, along with the intuitive 
physical consequences of edge fixity, leads to the conclusion that p 
should be unity in this instance. 

SIMPLY SUPPORTED CASES 

The SSI, SS2, and SS3 cases are treated in detail by Hoff and the author 
in Reference 4. The buckling stress ratios in the first two cases are the 
same as in the FC1 case, while the SS3-supported shell can buckle only at 
p = 1 (this is the classical, simply supported shell). 

The same argument presented for the FC4 case applies equally well to the 
SS4 case. Since p = 1 is a possible buckling stress ratio for all cases 
and it is the only possible value for buckling in the SS3 case, where the 
tangential reatraint is leas severe, one must conclude that p = 1 is the 
buckling condition for SŜ -aupported shells. 

COMPLETELY CLAMPED CASES 

All the cases, CC1 through CCk, were solved numerically by Hoff and 
Soong [6]. An examination of their results indicates that if 

B > M S t m ) 

where L is the shell length, then p is essentially unity for all clamped 
edge conditions. 

The results of Reference 6 can be verified readily, and the next section is 
devoted to a short analyais of the CC1 case. 
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CGI CASE 

The nontrivial satisfaction of equations  (58)  and (^0)  at    1=0    is 
assured if the following determinantal equation is satisfied: 

Q Q Q 

pl P? Pl 

PjJQ P?Q PJ.Q 

0, 
= 0 

p? 

P2Q (112) 

The rows in the above determinant reflect the vanishing of w, or 
and TO   , respectively. xl ' 

W,l ' 

If column 1 is subtracted from column_?, column 3 is subtracted from 
column k,  the factor (pg - pi)(pp - p^) = 1 is noticed, and the columns 
are rearranged in the above determinant, equation (112^ can be replaced by 

1 1 c 0 

Q 

Pl 

Q 

Pl 

0 

1 

0 

1 
= -(Q-Q)2 = 0 

P^ Pl« Q Q (113) 

(Q-Q) vanishes only at o = 1 , so buckling cannot occur at values of 
stress less than the classical value. 

CCg, CC3. AND CCU CASES 

Each of these cases implies more rigid edge fixation than the CC1 case; 
It is realized, therefore, that p = 1 corresponds to buckling in these 
cases. 
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CONCLUDIW. REMARKS 

A theoretical analysis,  based upon linear theory,   of the buckling behavior 
of axially compressed circular cylindrical shells has been undertaken to 
determine the effect of edge restraint upon the buckling stress; and over- 
all evaluation of this effect has been made by studying the l6 limiting 
cases of restraint which correspond to the vanishing of generalized 
forces and generalized displacements at an edge.    Of the 16 limiting 
cases, 8 permit buckling to occur at stresses less than the classical 
value of buckling stress. 

The buckling stress ratios for all the cases are displayed in the table on 
page 38.    While buckling in one caae occurs at a value of stress only 
slightly less than the classical one, buckling stresses approaching one- 
half of thib value are predicted in six instances which,   interestingly 
enough, represent a rather wide variety of restraining conditions;  a 
further 1? percent stress reduction hac oeen found previously by Nachbar 
and Hoff for completely unrestrained cylinders of sufficient length.    In 
addltlrn to the seven casiis of restraint which have been analyzed here for 
the first  time, the work of previous investigators  for the remaining cases 
has been reestablished and supplemented as well.    Since the effect of shell 
length has been shown to be of minor importance for shells of practical 
interest,  the analysis is simplified by treating sernl-infinite shells,  and 
this simplification permits solutions to be obtained in essentially closed 
form. 

On the basis of the results obtained,  both by previous Investigators and 
by the present anaiysls,  It is concluded that the mode of edge restraint 
can have a very significant effect upon the buckling stress of thin, 
axially compressed circular cylindrical shells.    Tills effect has been 
widely overlooked in the past, a possible reason being the absence of a 
pronounced shell length effect upon the buckling stress in both theory and 
experiment except «hen extremely short shells are considered. 
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APPENDIX I 

PROOF THAT THE ROOTS   p-    THROUGH    p^    HAVE NEGATIVE RiiAL PAR^n WHKN    P < 1 

The roots   p.    through   p,     will have negative real parts If the rarnmeters 
OL    and   a     defined In eqiJr+lon (kk) are negative; these parameters are 

^ = -(l-p)l/2 -(r44n2-p)l/2 (UU) 

a2 = (l-p)l/2 - (r44n2-p)l/2 (U5^ 

If   p < 1,    OL    will be negative if 

r + Urj2 - p > 0 (U6) 

By the definition inequation (4l) for   r,    equation (llo) can be written 

[(4n2-p)2 + l-p-]l/2 + (i^-p) > 0, (U7) 

vhlch proves that    OL     is obviously negative for   p < 1. 

Equation (115) implies that   OL   will be negative If 

(r^n2-p)l/2 > (l.p)l/2 (UB) 

This is equivalent to the requireraert that 

r > 1 - n2 (119) 

Now   r    can be conveniently written as 

r = [(W^-p)2 + l-p2]l/2 - [(lAn2)2 + 6n2(l-p)J1/2 (120) 

Thus, if equation (120) is substituted into equation (119), It la clear 
that a  is also negative for p < 1. 

These conclusions are stated in Reference Ik,  but a proof is not InclfdM. 
A less direct proof is also given in Reference U. 
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APPENDIX II 

IDENTITIES INVOLVING THE ROOTS p2> P3* AMD 

Equations (28) through (Ul) define and describe the roots of equation (2U). 
The four roots of interest, which possess negative real parts for p < 1> 
can be written as 

= i[-Ol/2 - 2)1/2 

,2,1/2; 

Pi = | [ - Q 1 / 2 - (Q+4n 2 ) l / 2 ] = 

% = k t / 2 - (Q^n2)1/2] , 

Pl = |[-QA/" - (<^n 

. l[Ql/2 . (ftAn2)1/2] 

P4 

(121) 

(122) 

(123) 

(12U) 

These roots satisfy the following equations: 
2 2 
Pl™ 

= - Q 1 / 2 , 
2 2 
P2

_n 

Pl 
= - Q 1 / 2 , 

P2 

-2 2 prn
 s 

Pi 
= - Ql/2, 

-2 2 
2™ 

P2 

= Q1/2 

-51/a 

(125*126) 

On the basis of equations (121) through (12U), it Is clear that 

P2 - pl = Pi + P2 * -(Q^2)1^2 

p2 - pi = 51 / 2 ?i + P2 - - ( W * ) 1 / 2 

(p2-pi)(p2-pi) - Q 1 / 2 Q 1 / 2 - 1 

Equations (125) through (120) provide the identities 

p 2 + P 2 = 2 n 2 + ( F 2 - P I ) Q 1 / 2 = 2 n 2 + Q 

5 2 + ^ = 2 n 2 + ( ? 2 - ? I ) Q 1 / 2 = 2 n 2 + Q 

(129-133) 

(13*) 

(135) 
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With the aid of equations (kO)  and {hi),  it le clear that 

i2 

(Pi + Pj,)^ ♦ P2) - l(Q^n2)l/2r • r        (136) 

The identities given hen, in edditinn to those ierived in the development 
of the »olutlons,  are aufflclent for the derivation of the buckling 
solutions.     Son* of the above Identl'ies were originally given by Nachbar 
In Referer.cf x^»  and others can be Cound in References k and 6. 
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AFPEimiX III 

PROOF THAT p = 1 IS ALWAYS A BUCKLING STRESS RATIO FOR LONG SHELLS 

By  assigning the value unity to the stress ratio p, equations (28), (29), 
(3l), and (32) yield the folloving simple expressions: 

Q ^ Q ^ -1 (137) 

Ql/2 = i (138) 

Ql/2 = - i (139) 

If these results are substituted into equations (l2l) through (124), it is 
found that 

p1 = - |[H- (l-kn2)l/2] dhO) 

p2 -~-|[l -(lAn
2)1/2] dkl) 

P3 = P2 (U2) 

P^ = V1 (1^3) 

Equations  (13?),   (1^2),   and (1^3) imply that the first and fourth columns, 
as well as the second and third columns,  of all the buckling determinants 
written for semi-infinite shells become identical when    p = 1.    Therefore, 
the vanishing of all these determinants at    p = 1    is assured. 

The question of whether buckling modes for    p = 1    can be found to satisfy 
a given set of edge restraint conditions is rather academic.    It is 
sufficient merely to refer to the numerical results obtained by Hoff and 
Soong in Reference 6 for shells of finite length.    These results indicate 
that even for a CC^-supported shell of finite length,    p    is essentially 
unity whenever 

1   lrti 
R>10R 

where L is the length of the shell. If t/R = l/lOO, then a shell must 
be shorter than its radius before the buckling stress is noticeably 
increased above the classical value. Since the CCh  case represents the 
most severe condition of edge restraint, unity is an upper bound for the 
buckling stress ratio which can be applied to all shells whose lengths 
exceed their respective radii, regardless of the condition of edge 
restraint. 
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